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This note summarizes the results of a numerical study designed to question (i.e., refute 
or validate) Chao et aL's 1 and Bertin and Ozoe's = conclusion that the critical Rayleigh 
number increases substantially as the Prandtl number becomes very small. The numerical 
method is based on the finite-difference control volume formulation and the complete 
equations for two-dimensional (2-D) time-dependent flow. The present results show that 
the lowest attainable Rayleigh number for numerically simulated convection increases as 
Pr decreases below 0.1. These results also extend the Prandtl number domain of the 
observations down to Pr= 10 -( and indicate that the natural shape of a single roll in this 
Pr range is approximately square. The discrepancy between these observations and the 
constant Rac=1,707.8 of the linear stability analysis is attributed to the extrapolation 
method on which the numerical convection-onset Ra data ~'= were based. It is shown that 
the numerical results agree with the linear stability constant Rao = 1,707.8 and Schl(iter 
et aL's = small amplitude perturbation analysis. 
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Introduction 

Eight years ago, Chao et al.1 reported that the critical Rayleigh 
number (Rat) for the onset of B~nard convection increases 
substantially when the Prandtl number decreases to values as 
low as 0.01. A few years later, Bertin and Ozoe 2 drew a similar 
conclusion in simulations based on the finite-element method 
and the steady-state version of the governing equations. Bertin 
and Ozoe's steady-state solutions covered the Pr range of 
0.003-1,000. 

The claim that Ra= should increase as Pr decreases runs 
counter to the classical view, which is that Rac is a constant 
independent of Pr. According to the method of linear stability 
analysis, that constant is 1,707.8 for a fluid layer held between 
two rigid (no-slip) horizontal walls. The constant-Rat conclusion 
is an integral part of all modem natural convection monographs. 
For example, Turner 3 specifically states that "the Prandtl 
number v/c~ does not enter into this time-independent problem." 
And, in the latest treatise on hydrodynamic stability, Drazin 
and Reid 4 stress that " . . .  the critical conditions, but not the 
rate of growth or damping, are independent of the Prandtl 
number." Finally, Busse's s tableau of the known transitions in 
B6nard convection (Figure 5 in his paper) shows a straight 
horizontal line (i.e., a Pr-independent Ra=) for the boundary 
between "no motion" and "steady rolls." 

The obvious conflict between these two views is a source of 
controversy, not because of the impassioned debate that it might 
generate but because of the silence with which it has been 
received in the published literature. A study of the post-1982 
Annual Science Citation Index shows no reports that question 
the conclusions reached by Chao et al.t and Bertin and Ozoe. 2 
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The only comment found was offered by Proctor, 6 who in a 
review of the book in which Reference I appeared, rejected 
Chao et al.'s conclusion that the critical Raylcigh number varies 
with the Prandtl number. 

The first objective of the numerical work described in this 
note was to question (refute or validate) the numerical con- 
clusion that the lowest convection Raylcigh number increases 
dramatically as Pr decreases. Intentionally, the numerical 
method chosen for the present work (control volume formu- 
lation, complete governing ecluations) differs from the methods 
utilized in References 1 and 2. An additional objective was to 
extend the numerical study of the convection onset to Prandtl 
numbers as low as 10 -4, i.e., to Pr values more than one order 
of magnitude lower than those considered in References I and 2. 
Another objective was to determine the natural aspect ratio of 
the cross section of a single two-dimensional (2-D) roll near 
the onset of B~nard convection in low Prandtl number fluids. 

M e t h o d  

The conservation equations for 2-D natural convection in a 
Boussinesq fluid are 

OU+OV=o (1) 
OX OY 

OU uOU+ OU 
- - +  - -  V . . . . .  (2) 
d~ OX OY 

OV OV OV 
- - + v  - - - -  (3) 

OO + U O0 + V O0 = (Ra Pr)-  ~/2. V20 (4) 
O~ OX OY 

This dimensionless formulation is based on Figure 1 and the 

t~P +(Pr~  t/2 

OP t . (Pry/2.V2V+O 
OY \ R a J  
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following definitions: 

(x, Y)= (x, y) (v, v )=  (u, v) (5) 
H (=/H)(Ra Pr) 1/2 

O~t O= T-- (Yh+ Tc)1/2 
z =~-~ (Ra Pr) 1/2 Th-- T~ (6) 

p_H2(p+PgY) p r = _  v Ra_gflH3tT~- Tc) 
(7) 

po~ZRa Pr ~ ~v 

We can rewrite the energy equation, Equation 4, in terms of 
the convection-induced correction to the temperature field, 
~(x, Y, T): 
~,=0-0o (8) 

in which O= represents the well-known pure conduction temper- 
ature distribution in the absence of fluid motion, or 

Oc =½-- Y (9) 

The resulting form of the energy equation is 

D~b+ V c ~ =  (RaPr)- t/2. V2~b + V (10) ~+Ucgx OY 

v=u=$=0 

8_VV 
aX 8X 

U=O 

Y,V 

lg 
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~_~v = a¢ o 
¢)X aX 

U=0 

[ X,U 

0 
V=U=$=0 

Figure I Computational domain and boundary conditions for a 
2-D roll with square cross section 
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Equations 1-3 and 10 were subject to the boundary con- 
ditions listed in Figure 1. The square domain represents the 
cross section of one of the 2-D rolls known to form during the 
onset of convection between the differentially heated horizontal 
walls. The validity of the square-roll assumption in the low Pr 
range was demonstrated numerically in the wide-layer simula- 
tions (as presented later in Figure 5). The square shape of the 
domain was held fixed. The boundary conditions imposed on 
the vertical sides of the square state that the flow is purely 
vertical, with zero shear, and that the vertical sides are adiabatic. 

The main requirement in the selection of the present numerical 
method was the need to use a method that differed substantially 
from that of Bertin and Ozoe 2 (finite-element, steady-state 
version of the governing equations). This requirement was met 
by the control-volume finite-difference method described by 
Patankar.7 The square domain was divided into a large number 
of square control volumes of various sizes, and Equations 1-3 
and 10 were integrated over each control volume. The flux 
terms were made discrete by use of the power-law method. The 
SIMPLE algorithm was used in order to solve the control- 
volume conservation statements and the pressure-correction 
equation that results from imposing Equation 1. The time 
derivatives were approximated by means of first-order forward 
differences, which led to a system of algebraic equations implicit 
in time. This system was solved using the Tri-Diagonal-Matrix- 
Algorithm in a line-by-line manner, by sweeping the entire 
domain in both directions for each variable. 

The initial condition used in all the numerical runs was the 
quiescent, pure conduction state: 

U=V=dp=O a t z = 0  (11) 

The initial temperature distribution was perturbed by assigning 
a horizontal gradient to the temperatures in the mid-height 
plane: 

c~=½Pr(½-X) at Y=½ and z=O (12) 

The reason for using the Prandtl number as a factor in Equation 
12 is that the Pr has opposing effects on the energy and 
momentum equations. As Pr decreases, the nonlinear (con- 
vection) terms become less significant in Equation 10, while the 
nonlinear (inertia) terms gain in importance in the momentum 
equations, Equations 2 and 3. Consequently, in the low Prandtl 

Notation 

B Function of Prandtl number 
g Gravitational acceleration 
H Vertical dimension of fluid layer 
i Iteration order 
k Thermal conductivity 
l Width of a single roll 
L Width of numerical domain in Figures 4 and 5 
NUb Bottom-wall overall Nusselt number 
Num Mid-height overall Nusselt number 
p Pressure 
P Dimensionless pressure 
Pr Prandtl number 
q'.'v= Average bottom-wall heat flux 
Ra Rayleigh number 
Ra= Critical Rayleigh number, Ra= = 1707.8 
Ra' Extrapolated convection-onset Rayleigh number, 

Figure 3 
sj Spatial location of the grid line 
t Time 

T 
r~ 
T~ 
U, V 

U, V 
x, y 
X, Y 

Temperature 
Temperature of cold (top) wall 
Temperature of hot (bottom) wall 
Velocity components 
Dimensionless velocity components 
Cartesian coordinates 
Dimensionless Cartesian coordinates 

Greek symbols 
rr 

O[ s 

A 
0 
O= 

V 

P 

q~ 

Thermal diffusivity 
Rate of grid stretching 
Coefficient of volumetric thermal expansion 
Spacing of the two grid lines nearest the boundary 
Dimensionless temperature 
Pure conduction dimensionless temperature 
distribution 
Kinematic viscosity 
Density 
Dimensionless time 
Convection correction to the dimensionless 

temperature distribution 
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number range of this study, convergence of the numerical 
solution is sensitive to the strength of the flow field (see the 
last term, V, in Equation 10). Smaller velocities improved 
convergence at progressively lower Prandtl numbers; therefore 
the temperature disturbance, Equation 12, was tailored so that 
it decreased with Pr. 

The relaxation factors for the momentum and energy equa- 
tions varies from 0.90 to 0.98. These relatively high values were 
needed because of the extremely weak flow that persists at the 
lowest Rayleigh numbers where convection was present. 

The convergence of the numerical solution was monitored 
both locally and globally. The max-norm value was used for 
the velocity components (U, V) and the temperature correction 
function (4)). The global parameter was the overall Nusselt 
number based on the heat flux averaged over the bottom wall: 

k(T.- T~) O-Y r=o 
The convergence criteria at each time step were 

MAX (U, V, q~)'+ 1 - ( U ' ( u ,  V, 4))': V, ~b), <10_ 3 (14) 

Nu~+ 1 - N u ~  < 10_ 6 (15) 
Nu~, 

in which i and i + 1 are two consecutive iterations at the same 
time step. In the steady state, the difference between the bottom 
Nusselt number (Nub) and the mid-height Nusselt number 

Nu,~= f~ [(RaPr)'/2VO-~y]r= dX (16) 

was less than 10 -s. The Nu m parameter is a dimensionless 
measure of the total heat transfer rate (conduction and con- 
vection) through the horizontal mid-plane of the square roll. 

The grid was slightly nonuniform, with smaller control 
volumes placed near the four boundaries: 

sj+ 1 =sy+ a~ A (17) 

where sj is the spatial location of the jth grid line (sj is measured 
away from the boundary) and ~, and A are the rate of grid 
stretching and the spacing of the two grid lines nearest the 
boundary, respectively. The choice of 40 x 40 grid with cq = 
1.0296 and A = 0.02 (see the reduced detail of Figure 1) was 
based on the accuracy test illustrated in Figure 2. We found 

that a more nonuniform grid (larger ct.) does not reveal any 
new information, because near the convection onset the flow 
fills the entire square. 

For each Pr case, the Rayleigh number was decreased to the 
lowest level allowed by our computational means. This difficulty 
was caused not only by the progressively low rate of viscous 
damping (in spite of Equation 12), but also by the overall 
Nusselt number taking on values very close to 1. The simulation 
of Ra cases below the lowest Ra's listed in Table 1 would have 
required considerably more stringent (i.e., computationally pro- 
hibitive) convergence criteria than the ones listed in Equations 
14 and 15. 

Numer ica l  results 

Table 1 summarizes all the steady-state values obtained for the 
overall Nusselt number. In order to see whether these NUb 
values agree with Bertin and Ozoe's, e we used their method of 
correlating these data for the purpose of finding the "extrapo- 
lated critical" Rayleigh number Ra'. This number is shown at 
the bottom of each block of Pr values in Table 1. It was obtained 
exactly as in Reference 2 by correlating the numerical NUb data 
in accordance with Malkus and Veronis '8 equation, 

I Ra'(Pr)-] , 
N u b = l +  1 Raa / B(PrJ (18) 

m 

and by setting Nub= 1. Figure 3 shows that the present 
extrapolated Ra' values agree well with those of Bertin and 
Ozoe. 2 The maximum difference between the two sets is less 

1 
(Nu-1) 

io -l 

10 -2 

10 -3 

Figure 2 

10 -4 

grid At 

• 4 0 x 4 0  0 .08[  

14 x 14 i 

10 -3 10 ̀2 10 -1 l 10 10 2 
P r  

The effect of grid size on numerical accuracy (Ra = 3,000)  

Table I Numerical results for the overall  Nusselt number in the v ic in i ty  of  the onset of  B6nard convect ion  

Pr = 0.0001 Pr = 0.0003 Pr = 0.001 Pr = 0.003 Pr = 0.01 

Ra Nu b Ra N% Ra Nu b Ra Nu b Ra Nu b 

3850 1.000030 3450 1.000155 3100 1.000946 2900 1.005433 2700 1.030209 
3800 1.000021 3400 1.000119 3000 1.000634 2700 1.003087 2500 1.020762 
3750 1.000012 3350 1.000083 2950 1.000470 2600 1.001779 2300 1.009672 
3700 1.000002 3300 1.000046 2900 1.000300 2500 1.000366 2200 1.003370 

Ra'=3,685.7 Ra'=3,240.8 Ra'=2,815.3 Ra'=2,475.3 Ra'=2,150.0 

Pr = 0.03 Pr = 0.1 Pr = 0.3 Pr = 1 Pr = 10 Pr = 1 O0 

Ra Nu b Ra Nu b Ra Nu b Ra Nu b Ra Nu b Ra Nu b 

2300 1.085451 2300 1.289227 2300 1.392743 2300 1.395814 2300 1.395805 2300 1.395802 
2100 1.047418 2100 1.206273 2100 1.284556 2100 1287064 2100 1.287060 2100 1.287059 
2000 1.025551 1900 1.105807 1900 1.153594 1900 1.154012 1900 1.154011 1900 1.154010 
1900 1.013780 1800 1.047201 1800 1.077199 1800 1.077998 1800 1.077997 1800 1.077997 

Ra'=1,894.6 Ra'=1,726.8 Ra'=1,709.1 Ra'=1,708.8 Ra'=1,708.8 Ra'=1,708.8 
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Figure 3 The Pr effect on the extrapolated Rayleigh number for 
the onset of  convec t ion  

Pr=0.01 L = 4 0.0273 -0.0273 
Ra=2200 H o.o,95 -o.o,95 

0 ,0117  - 0 , 0 1 1 7  

0 . 0 0 3 9  - 0 , 0 0 3 9  

Pr=0.001 _L = 4 o.8122 -o.ol22 
0.00116 - 0 .0080  

Ra=2900 H 0.0052 -0.0o02 
0 ,0018  - 0 ,0010  

v? 
0 ,0122  - 0 , 0 1 2 2  

Pc=0.0001 L = 4 0.0008 -o,o0o8 
Ra=3700 H o.oos2 -o.oo~2 

0 .0010  - 0 .0010  

Figure 4 The natural square shape of the cross section 
2-D roll 

of each 

than 3 percent. The present Ra' calculations extend down to 
Pr = 10- 4, whereas Bertin and Ozoe could not obtain converged 
steady-state solutions below Pr = 0.003. 

In References 1 and 2, the extrapolated Ra' was viewed the 
same as the critical Rayleigh number for the onset of convection, 
Rac. It would be tempting to reconcile the empirical conclusion 
that R a ' =  function (Pr) with the constant-Ra~ dictum of hydro- 
dynamic stability theory by arguing that the square roll (Figure 
1) is an unrealistic assumption in the low Prandtl number range. 
This possibility became the subject of an additional set of 
numerical simulations in a very shallow domain in which the 
width of each roll was not fixed by means of boundary 
conditions. The Rayleigh number was decreased as much as 
possible for the purpose of observing the natural number and 
shape of the rolls that persist. 

Figure 4 shows the flow pattern in the Pr range of 10-2 to 
10 -4. In each case, the Ra value is the lowest for which 
convection was detected in the numerical experiments reviewed 
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in Table 1. The boundary conditions on the vertical sides of 
the shallow layer of Figure 4 were the same as those on the 
sides of the square in Figure 1. The grid was 104 × 26, i.e., 
26 × 26 for each fourth (square) of the shallow layer. This grid 
is coarser than the 40 × 40 grid used for the square domain 
(Figure 2). The computational time would have been prohibitive 
had we tried a grid of the same fineness (40 x 40 per square) 
for the shallow layer. 

In Figure 4, the numbers listed next to each set of streamlines 
represent the dimensionless stream function ~P, for which 

d~p c~P 
U = - -  and V = - - -  (19) 

dy dX 

The negative and positive ~P values indicate clockwise and 
counterclockwise rolls, respectively. The largest absolute ~P 
value corresponds to the streamline closest to the center of the 
roll. These stream-function values are virtually identical to the 
ones calculated using the square domain of Figure 1. 

The streamline patterns of Figure 4 support the assumption 
that the natural shape of the near-critical roll is square in the 
low Pr range of this numerical study. The natural shape of the 
near-critical roll was pursued further in Figure 5, in which Pr 
and Ra were held constant while the width of the numerical 
domain was increased. In association with the middle part of 
Figure 4, Figure 5 shows what happens for successive L/H 
values of 4, 4.5, and 5. 

The number of cells increases from four (Figure 4) to five 
(Figure 5), as L/H increases from 4 to 4.5. For  the width/height 
ratio of a single roll, UH, at P r =  10 -3 the natural UH of the 
roll has a value between 1 and 0.9. This finding is approximated 
well by the l/H = 1 assumption on which the data of Table 1 
are based. 

Conclusions 

We have shown by a different method that the actual numerical 
results reported in References 1 and 2 are correct. By themselves, 
these results are useful because they show that simulating 
near-critical Brnard convection numerically near R a =  1,707.8 
when the Prandtl number is less than 0.1 is very difficult. 

The divergence between the Ra'(Pr) curve of Figure 3 and 
the Rac constant of the linear stability analysis can only be 
attributed to the extrapolation method 1'2 that produced the 

O. tH60  - 0 , 0 1 6 0  
Pr=0.001 L = 4.5 o.o115 -o,oHs 
Ra=2900 H 0.0060 - o.oo00 

0 .0023  - 0 . 0 0 2 3  

0,0172 - 0 . 0 1 7 2  Pr=0.001 L = 5 o.o123 -o.o)23 
Ra=2900 H o,oo~ -o.oo7~ 

0.0024 - 0,002'~ 

Figure 5 Multiplication of rolls as the layer width increases at 
constant Pr and Ra 
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10 

Nub-1 
Ra - I  1,  " -" 
Ra~ 10-L 

(20) 
10 -2, 

I0 -3 

i0 4, 

10 -5, 

II~ 6' 

I0 -4 I0 "3 10 -2 lff t I 10 10 2 

Pr 

Figure 6 Agreement between the present results and SchlOter et 
al.'s = asymptotic theory for Ra --, Rao, wi th  Ra¢ = 1,707.8 

Ra' values of Table 1, i.e., to the fact that Ra' is not Rac. Indeed, 
Schliiter et al. 's  9 small amplitude perturbation analysis showed 
that close to the onset of 2-D rolls the overall Nusselt number 
behaves as 

NUb = 1 + ( R ~ -  1) (0.69942- 0.00472 Pr -  ' + 0.00832Pr- 2)- ' 

(20) 

in which Ra= = 1,707.8. This asymptotic theory is supported by 
the Nub data developed in this study. Figure 6 shows the Nub 
curve given by Equation 20, next to the lowest Ra data of each 
of the Pr blocks of Table 1. Specifically, the black triangles 
correspond to the lowest Ra case simulated numerically, and 
the white triangles correspond to the second-lowest Ra case. 
The agreement between Equation 20 and the numerical NUb 
data is not as good in the range Pr<_10 -3 because of the 
convergence difficulties noted in the Method section. This 
agreement improves visibly as we shift from the white triangles 
to the black triangles, i.e., as the Rayleigh number decreases. 
The agreement is surprisingly good in view of Clever and 
Busse's 1° earlier conclusion that Equation 20 holds asymp- 
totically when the excess Rayleigh number (Ra-Rac)  is less 
than O(10). In the case of the triangles of Figure 6, the excess 
Rayleigh number is O(102) and larger. 

It is important to discuss our results in juxtaposition with the 
work of Clever and Busse.t t,12 Recent numerical simulations1 
show that the transition from thermal convection in the form 
of rolls to traveling wave convection occurs at Ra = 1,854 in the 
limit of Pr ~ 0. This bifurcation corresponds to the oscillatory 
instability that gives rise to wavy distortions of the convection 
rolls that travel along the axis of the rolls. This is a three- 
dimensional (3-D) field that was not studied in the present 

work. A method to suppress this 3-D motion by using magnetic 
fields has been explored by Busse and Clever. 12 

We close by commenting on the validity of Equation 18, 
which was crucial in References 1 and 2. The power integral 
method of Malkus and Veronis s is known to give up to 10 
percent inaccuracies in Nusselt number. Consequently, Equation 
18 is useful only for crude approximations. Equation 20, which 
contradicts Equation 18 as far as Ra dependence is concerned, 
is the correct asymptotic formula. Its usefulness as Pr--,0 is 
limited because it behaves as 

N u -  1 ~ ( R a -  Rac)Pr 2 (21) 

Expression 21 shows that the departure of Nu above the 
conduction level ( N u = l )  exceeds the practical numerical 
tolerances as er  decreases. 
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